Peru Field Trip Readings

Overview

Benavides, C.V., 1999, The Orogenic Evolution of the Peruvian Andes: The Andean Cycle, In Geology and Ore Deposits of the Central Andes, B.J. Skinner, Ed., Society of Economic Geologists Special Publication Number 7, 61-108.

Petersen, U., 1999, Magmatic and Metallogenic Evolution of the Central Andes, In Geology and Ore Deposits of the Central Andes, B.J. Skinner, Ed., Society of Economic Geologists Special Publication Number 7, 109-154.

Noble, D.C. and McKee, E.H., 1999, The Miocene Metallogenic Belt of Central and Northern Peru, In Geology and Ore Deposits of the Central Andes, B.J. Skinner, Ed., Society of Economic Geologists Special Publication Number 7, 155-194.

Petersen, U. and Vidale, C., Magmatic and Tectonic Controls on the Nature and Distribution of Copper Deposits in Peru. In Andean Copper Deposits: New Discoveries, Mineralization , Styles and Metallogeny, F. Camus, R.M. Sillitoe and C.R. Petersen, Eds., Society of Economic Geologists Special Publications No. 5, 1-18.

Petersen, U., 1990, Geological Framework of Andean Mineral Resources, Geology of the Andes and its Relation to Hydrocarbon and Mineral Resources, in G.E. Eriksen, M.T.C. Pinochet and J.A. Reinemund, Eds., Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, Volume 11, 223-232.

Corvalan, J., 1990, Geologic ­Tectonic Framework of the Andean Region, in G.E. Eriksen, M.T.C. Pinochet and J.A. Reinemund, Eds., Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, Volume 1-11.

 

San Vicente

Fontbote, L. and Gorzawski, H.,1990,Genesis of the mississippi valley-type Zn-Pb deposit of San Vicente, central Peru; geologic and isotopic (Sr, O, C, S, Pb) evidence. Economic Geology. 85; 7, 1402-1437.

Spangenberg-Jorge-E; Fontbote-Lluis; Macko-Stephen-A 1999, An evaluation of the inorganic and organic geochemistry of the San Vicente mississippi valley-type zinc-lead district, central Peru; implications for ore fluid composition, mixing processes, and sulfate reduction. Economic Geology. 94; 7, 1067-1092.

Spangenberg-Jorge-E; Macko-Stephen-A., 1998, Organic geochemistry of the San Vicente zinc-lead district, eastern Pucara Basin, Peru. Chemical Geology. 146; 1-2, 1-23.

Gorzawski, H., Fontbote, L., Field, C.W. and Tejada. R., 1990, Sulfur isotope studies in the zinc-lead mine San Vicente, central Peru. In: Stratabound ore deposits in the Andes. Fontbote-Lluis (editor); Amstutz-G-Christian (editor); Cardozo-Miguel (editor); Cedillo-Esteban (editor); Frutos-Jose (editor) Special Publication of the Society for Geology Applied to Mineral Deposits. 8; 305-312.

Spangenberg, J., Sharp, Z.D. and Fontbote, L, 1995, Apparent stable isotope heterogeneities in gangue carbonates of the mississippi valley-type Zn-Pb deposit of San Vicente, central Peru. Mineralium Deposita. 30; 1, 67-74.

 

Raul

Vidal-C-Cesar-E; Injoque-Espinoza-Jorge; Sidder, G.B; Mukasa, S.B., 1990, Amphibolitic Cu-Fe skarn deposits in the central coast of Peru. Economic Geology, 85; 7, 1447-1461.

Ripley, E.M. and Ohmoto, H., 1977, Mineralogic, sulfur isotope, and fluid inclusion studies of stratabound copper deposits at the Raul Mine, Peru. Economic Geology, 72, 1017-1041.

Ripley, E.M. and Ohmoto, H., 1979, Oxygen and hydrogen isotopic studies of ore deposition and metamorphism at the Raul mine, Peru. Geochimica et Cosmochimica Acta, 43, 1633-1643.

 

VMS

Vidal, C-Cesar-E, 1987, Kuroko-type deposits in the Middle-Cretaceous marginal basin of central Peru. Economic Geology. 82; 6, 1409-1430.

Toquepala

Richard, K. and Courtright, J.H., 1958, Geology of Toquepala, Peru. Min. Eng., (Am. Inst. Min., Met., & Petroleum Eng., Tr.. 10; 2, 262-266.


The Toquepala porphyry copper deposit in south Peru is associated with a relatively large breccia pipe formed by repeated episodes of brecciation both before and after emplacement of small dacite porphyry dikes and stocks in Cretaceous? and Tertiary volcanic rocks and diorite of the Andean batholith. Supergene enrichment of the chalcopyrite ore within and around the pipe has given rise to a flat-lying zone of chalcocite which forms a major part of the ore body.

Clark, A.H., Tosdal, R.M., Farrar, E. and Plazolles, V.A., 1990, Geomorphologic environment and age of supergene enrichment of the Cuajone, Quellaveco, and Toquepala porphyry copper deposits, southeastern Peru. Economic Geology. 85; 7, 1604-1628.

Mukasa-Samuel-B, 1986, Common Pb isotopic compositions of the Lima, Arequipa and Toquepala segments in the Coastal Batholith, Peru; implications for magmagenesis. Geochimica et Cosmochimica Acta. 50; 5, 771-782.

Zweng, P.L. and Clark, A.H., 1995, Hypogene evolution off the Toquepala porphyry copper-molybdenum deposit, Moquegua, southeastern Peru. In: Porphyry copper deposits of the American Cordillera, Pierce-Frances-Wahl (editor); Bolm-John-G (editor) Arizona Geological Society Digest. 20; Pages 566-612. Arizona Geological Society. Tucson, AZ, United States. .

 

Casapalca

Wu, I. and Petersen, U., 1977, Geochemistry of tetrahedrite and mineral zoning at Casapalca, Peru. Economic Geology. 72; 6, 993-1016.

Reid, R.R., 1975, A comment on the Casapalca vein system [discussion]. Economic Geology. 70; 2, 406-407.

Rye, R.O. and Sawkins, F.J., 1974, Fluid Inclusion and Stable Isotope Studies on the Casapalca Ag-Pb-Zn-Cu Deposit, Central Andes, Peru. Economic Geology. 69; 2, 181-205.

 

Cerro Verde

Le-Be, L., 1977, Fluid inclusion study of the porphyry copper deposit of Cerro Verde-Santa Rosa, South Peru; Part I, The quartz-sericite alteration.
Journal of the Geological Society of London. 134, Part 3; 392.