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ABSTRACT

The crust of the Great Basin has occupied 
a range of tectonic settings through geologic 
time. Archean and Paleoproterozoic crustal 
genesis preceded residence of Laurentia 
within the Mesoproterozoic supercontinent 
Rodinia, which rifted in the late Neopro-
terozoic to delineate the Cordilleran fl ank of 
Laurentia. Successive stages of Phanerozoic 
evolution included (1) early to middle Paleo-
zoic miogeoclinal sedimentation along a pas-
sive continental margin, (2) late Paleozoic to 
earliest Mesozoic thrusting of oceanic Antler 
and Sonoma allochthons over the continental 
margin in response to episodic slab rollback 
beneath an offshore Klamath-Sierran island-
arc complex, (3) Mesozoic to mid-Cenozoic 
arc-rear and backarc thrusting, together 
with pulses of interior magmatism, associated 
with development of the Cordilleran mag-
matic arc to the west where subduction and 
arc accretion expanded the continental mar-
gin, and (4) middle to late Cenozoic crustal 
extension, which involved initial intra-arc 
to backarc deformation and later transten-
sional torsion of the continental block inland 
from the evolving San Andreas transform 
system. Potential metallogenic infl uences 
on Great Basin tectonic evolution included 
transfer of substance from mantle to crust by 
magmatism and associated metasomatism, 
and reworking of crustal materials by both 
magmatism and intracrustal fl uid fl ow, the 
latter of which was induced both by thermal 
effects of magmatism and by reconfi guration 
of fl uid-bearing rock masses during multiple 
episodes of Great Basin deformation.

Keywords: Basin and Range, geologic history, 
geotectonics, Great Basin, Nevada.

INTRODUCTION

The broad outlines of Cordilleran plate tecton-
ics are now well understood (Dickinson, 2000, 
2002, 2004), although disputes continue regard-
ing the impetus for each stage of tectonic evolu-
tion, and our mental picture grows  progressively 

dimmer as earlier and earlier geologic time 
frames are considered. The purpose of this paper 
is to provide an overview of Great Basin geotec-
tonics through geologic time as background for 
discussions of Great Basin metallogeny in subse-
quent papers of this special issue.

TECTONICS AND METALLOGENY

To understand metallogeny, one must know 
the geologic sources of the constituents in ore 
minerals, appreciate the structural preparation 
of rock masses for ore deposition, and under-
stand the mechanisms for ore transport and pre-
cipitation. Tectonics lies at the root of all these 
issues. Potential sources of metals in the crust 
and mantle vary with tectonic setting, structural 
conditions within the crust are a function of tec-
tonic evolution, and fl uid fl ow through the crust 
is dictated by ambient tectonic environments. 
Few regions of the world have had as varied a 
tectonic history as the Great Basin, and its geo-
logic complexity challenges interpretations of 
metallogeny to the utmost.

The nature of potential metal sources in the 
deep mantle changed over time as lithospheric 
plates moved over asthenosphere. The composi-
tion of the crust and the immediately subjacent 
lithospheric mantle were modifi ed over time 
as mantle magmatism and associated metaso-
matism added materials that were previously 
absent, and extraction of crustal melts and 
leaching by rising fl uids removed materials once 
present. Ground preparation by structural defor-
mation in the Great Basin refl ects the effects of 
multiple tectonic episodes of contrasting struc-
tural style, which resulted in superposed struc-
tural features and older structures overprinted 
by younger ones.

Ore transport and deposition involve inher-
ent thermochemical variability diffi cult to 
infer because the fl uids and thermal conditions 
that formed ore are recorded in the geologic 
record only by subtle indicators that are dif-
fi cult to read without ambiguity. For relations 
between tectonics and metallogeny, there are 
two linked but separate facets of ore genesis to 
keep in mind: (1) mobilization of elements of 
interest from mantle or crustal reservoirs, and 

(2)  precipitation or fi xation of those elements at 
the site of an ore deposit. Setting an element in 
motion from some suitable reservoir is a nec-
essary but insuffi cient factor for ore genesis, 
because no ore deposit is formed so long as the 
element keeps on moving. Thermomechanical 
conditions for mobilization and for precipitation 
are diametrically opposed, yet both are required 
for ore genesis. Many metallic elements may 
be set in motion through some segment of the 
crust during a given tectonic regime, but only 
those induced thermochemically to stop moving 
will occur in a given ore deposit. The source of 
metals may be of secondary interest for metal-
logeny, with site conditions that encouraged ore 
deposition of primary importance.

GREAT BASIN TECTONIC HISTORY

The Great Basin forms the widest segment 
of the vast Basin and Range taphrogen, which  
extends for >2500 km from the Pacifi c North-
west to central Mexico (Fig. 1). From the Colo-
rado Plateau on the east to the Sierra Nevada on 
the west, and from the Snake River Plain on the 
north to the Garlock fault and the Mojave block 
on the south, the Great Basin occupies a 600 km 
by 600 km tract of rugged internal topography. 
The bulk of the Great Basin lies within the state 
of Nevada (state outlines are shown on accom-
panying paleotectonic maps), but it extends also 
into western Utah and the eastern fringe of Cali-
fornia. The Oregon Plateau segment of the Basin 
and Range taphrogen (Fig. 1) is in part internally 
drained, and it can be considered an appendage 
of the Great Basin proper.

The Great Basin evolved along the western 
fringe of Precambrian Laurentia through diverse 
chapters of Earth history, each if which had 
potential but varying implications for metallog-
eny (Fig. 2), including:

(1) Precambrian emergence of juvenile conti-
nental crust from the mantle to form the Archean 
Wyoming Province and the Paleoproterozoic 
Mojave Province;

(2) Mesoproterozoic incorporation of the Pre-
cambrian basement into the Rodinian supercon-
tinent during an interval punctuated by incipient 
Belt-age rifting;
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Figure 1. Position of the Great Basin 
in the western Cordillera (adapted 
after Dickinson, 2002). Modern triple 
plate junctions: MTJ—Mendocino; 
RTJ—Rivera; TTJ—Tofi no. Other 
abbreviations: BM—Blue Moun-
tains; CRP—Columbia River Plateau 
(check pattern and red color denote 
extent of Columbia River Basalt 
lavas); KFMS—Kisenehn-Flathead-
Mission-Swan extensional Paleogene 
basins; KM—Klamath Mountains; 
LCZ—Lewis and Clark fault zone; 
PNW—Pacifi c Northwest; RFZ—
Rivera Fracture Zone; SN—Sierra 
Nevada; SRP—Snake River Plain; 
TMI—Tres Marias Islands (cross 
pattern and red color denote extent of 
bimodal volcanic suite).
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Figure 2. Time-space diagram of lithic assemblages in the Great Basin and adjoining areas (note time-scale breaks at 50 Ma, 400 Ma, 
and 500 Ma). The rectangle labeled truncation denotes schematically the completion of continental truncation along the Permian-Triassic 
California-Coahuila transform and subsequent initiation of the Mesozoic-Cenozoic Cordilleran continental-margin magmatic arc. Key 
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(3) Neoproterozoic rifting that delineated the 
Cordilleran miogeocline along which passive-
margin sedimentation continued until mid–Late 
Devonian time;

(4) Late Devonian to early Mississippian 
thrusting (Antler orogeny) of deformed oceanic 
facies, forming the Roberts Mountains alloch-
thon, over the miogeocline;

(5) late Mississippian to Permian (post-Ant-
ler) deposition of the marine-nonmarine Ant-
ler overlap sequence atop the Antler orogen, 
of oceanic strata in the Havallah basin west of 
the Antler orogen, and of foreland-basin clastic 
strata east of the Antler orogen, with local tec-
tonic disruption of the Antler foreland related 
to intracontinental deformation that formed the 
Ancestral Rocky Mountains;

(6) Late Permian to mid–Early Triassic thrust-
ing (Sonoma orogeny) of deformed Havallah 
oceanic facies, forming the Golconda alloch-
thon, over the dormant Antler orogen;

(7) Mid–Early Triassic development of the 
nascent Cordilleran magmatic arc fl anked by 
a Late Triassic to Early Jurassic backarc basin 
(Auld Lang Syne Group);

(8) Middle Jurassic and mid-Cretaceous 
development of retroarc thrust belts, with an 
intervening episode of Late Jurassic backarc 
magmatism well inland from the continental 
margin associated with arc accretion along the 
continental margin;

(9) Late Cretaceous to Paleogene inland 
migration of Laramide magmatism from the 
Sierra Nevada on the west toward the Rocky 
Mountain continental interior;

(10) Late Eocene to Early Miocene re-migra-
tion of spatially complex magmatism back 
across the Great Basin from the interior toward 
the continental margin;

(11) Oligocene to Miocene intra-arc to back-
arc extensional deformation involving tectonic 
denudation of basement rocks in several Cordil-
leran core complexes; and

(12) Neogene basin-range transtension and 
accompanying dispersed magmatism linked 
geodynamically to evolution of the San Andreas 
transform system.

PALINSPASTIC ISSUES

The paleogeography of large tracts of the 
Great Basin has been repeatedly rearranged, 
fi rst by overlap of rock masses during episodes 
of Paleozoic-Mesozoic thrusting and later by 
separation of rock masses during Cenozoic 
extension of the intermountain belt. Since our 
knowledge of tectonic geometry within the 
Great Basin remains imperfect, palinspastic 
adjustments to paleogeography for paleotectonic 
reconstructions are somewhat idiosyncratic and 

partly model-driven. Moreover, shifting modern 
geography into palinspastic frameworks would 
make the resulting paleotectonic maps diffi cult 
to relate to modern geographic features familiar 
to Great Basin geologists.

Accordingly, the paleotectonic maps of this 
paper are plotted (base map after Muehlberger, 
1992) on modern geography, apart from the 
palinspastic restoration of crustal elements that 
have moved laterally, as internally more-or-less 
intact blocks, for >75 km along discrete struc-
tures. The latter are typifi ed by the San Andreas 
fault but include several other more controver-
sial structures within the arc assemblages that lie 
mostly to the west of the Great Basin but in part 
along its western fringe. The only palinspastic 
adjustments incorporated into the paleotectonic 
maps are the following, with no attempt made to 
restore more distributive strain within the Great 
Basin itself:

(1) reversal of 470 km of net post–mid-Mio-
cene dextral slip along the central California 
coast across multiple strands of the San Andreas 
transform system (Dickinson and Butler, 1998);

(2) post-mid-Oligocene reversal of post-
mid-Eocene tectonic rotations (clockwise) of 
the Pacifi c Northwest (PNW) Coast Range and 
the Blue Mountains Province by a nominal 45° 
each with respect to the continental interior, 
with concomitant eastward shift of the Klamath 
Mountains block linked depositionally to the 
Pacifi c Northwest Coast Range since Paleocene 
time (Dickinson, 2002, 2004);

(3) pre-Cretaceous shift of Klamath-Sier-
ran rock masses southward to compensate for 
210 km of Early Cretaceous dextral slip (Dick-
inson, 2005) along the Mojave–Snow Lake fault 
(Lahren and Schweickert, 1989; Schweickert 
and Lahren, 1990) and related faults longitudi-
nal to the alignment of the Sierra Nevada batho-
lith; and

(4) reversal of 950 km of Permian-Trias-
sic sinistral slip along the California-Coahuila 
transform, which truncated the Cordilleran con-
tinental margin in California and linked Sonoma 
orogenic trends in the Great Basin to an arc-
trench system in eastern Mexico (Dickinson, 
2000; Dickinson and Lawton, 2001a).

Mojave–Snow Lake Conundrum

Mojave–Snow Lake fault displacement 
along a cryptic structure, which was obliter-
ated by later intrusion of the Sierra Nevada 
batholith, was detected by recognition of the 
Cambrian Zabriskie Quartzite and associated 
stratigraphic units of the southeastern or Death 
Valley facies of the Cordilleran miogeocline 
in the Snow Lake roof pendant of the central 
Sierra Nevada (Grasse et al., 1999). Exposures 

of the Death Valley facies in the Snow Lake 
pendant are separated from stratal counterparts 
in the Death Valley region by a wide expanse 
that exposes only the northwestern or Inyo 
facies of the miogeocline.

Initial analysis of apparent Mojave–Snow 
Lake offset suggested a displacement of 
400–500 km (Lahren and Schweickert, 1989; 
Schweickert and Lahren, 1990). Because the 
northward trace of the Mojave–Snow Lake fault 
is inferred to pass east of the northern Sierra 
Nevada (Schweickert and Lahren, 1990, 1993a; 
Wyld and Wright, 2001), reversal of such large 
dextral slip along the Mojave–Snow Lake fault 
would restore Paleozoic arc assemblages of the 
eastern Klamath Mountains and northern Sierra 
Nevada to an unlikely position athwart the trend 
of the Cordilleran miogeoclinal belt. 

The misalignment of Death Valley and Inyo 
miogeoclinal facies across the Mojave–Snow 
Lake fault does not, however, require such large 
displacement (Saleeby and Busby, 1993). Strata 
of the Death Valley facies, including the diag-
nostic Zabriskie Quartzite, extend as far north-
west as the vicinity of Lone Pine in Owens Val-
ley between the Inyo Mountains and the Sierra 
Nevada (Nelson, 1976; Stewart, 1983). Deriva-
tion of the Snow Lake pendant from the vicin-
ity of Lone Pine requires net fault offset of only 
210 ± 15 km. The Mojave–Snow Lake fault 
can be viewed as just one of a family of dextral 
faults offsetting miogeoclinal strata of the east-
ern Sierra Nevada (Stevens and Greene, 1999, 
2000), and the indicated net slip of 210 km can 
be interpreted as the sum of parallel displace-
ments on multiple structures. The postulated 
net slip of 210 km adopted here is suffi cient to 
explain the distortion of strontium-isotope and 
other geochemical isopleths in the central Sierra 
Nevada (Kistler, 1993), and greater Mojave–
Snow Lake offset would seem precluded by the 
known geographic pattern of the isopleths. Res-
toration of 210 km of Mojave–Snow Lake dis-
placement additionally places lithic assemblages 
of the eastern Klamath Mountains along tectonic 
strike from counterparts in the Pine Forest Range 
(Wyld, 1990) of northwestern Nevada.

PREMIOGEOCLINAL PRECAMBRIAN

Precambrian basement in the Great Basin 
lies along the western fl ank of Laurentia and 
was built by successive accretionary episodes of 
crustal genesis around an Archean continental 
nucleus. Archean rocks of the Wyoming prov-
ince (older than 2500 Ma) extend into north-
ernmost Utah and northeastern Nevada (Fig. 3). 
Farther south in the Great Basin, basement lies 
within the poorly known Mojave Province of 
Paleoproterozoic rocks, which are partly older 
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than the conjoined Yavapai-Mazatzal terranes 
(1800–1600 Ma) farther east (Fig. 2).

Laurentia was incorporated into the Mesopro-
terozoic supercontinent of Rodinia at the time of 
the Grenville orogeny (1300–1000 Ma), but the 
identity of the crustal blocks lying immediately 
west of the Great Basin within Rodinia remains 
uncertain. Options include the Precambrian 
cores of Siberia (Sears and Price, 1978, 2000, 
2003), East Antarctica (Hoffman, 1991; Moores, 
1991; Dalziel, 1991; Weil et al., 1998; Li, 1999), 
and Australia (Brookfi eld, 1993; Powell et al., 
1994; Karlstrom et al., 1999, 2001). Postulated 
geologic ties of Laurentia to Australia or Ant-
arctica are diffi cult to defend in detail (Wingate 
et al., 2002), but a close match of Proterozoic 
lithostratigraphy from the Death Valley region 
at the southern limit of the Great Basin to the 
Sette-Daban Range of southeastern Siberia 
provisionally confi rms the Siberian connection 
(Sears et al., 2005).

The possible signifi cance of Precambrian evo-
lution for later metallogeny in the Great Basin is 
uncertain, but subjacent Precambrian basement 
is a potential reservoir for metals mobilized by 
Phanerozoic tectonic events. Continental crust 
is commonly viewed in generic terms, as if one 
continental block were indistinguishable from 
another, but different crustal blocks around the 
world harbor different kinds of ore deposits, and 
differences in the continental basement of the 
Great Basin might be signifi cant for metallog-
eny. The Cheyenne suture belt between Archean 
and Paleoproterozoic terranes (Karlstrom and 
Houston, 1984; Chamberlain et al., 1993) pro-
jects westward into the Great Basin (Fig. 3) and 
delineates a local contrast in crustal architecture 
(Wright and Wooden, 1991).

Incipient Precambrian rifting may have locally 
affected Precambrian basement of the Great 
Basin by introduction of mantle-derived mag-
mas into the crustal profi le or by redistribution 
of crustal materials through the thermal effects 
of rifting. Pre-Rodinian intracontinental rifting 
(1470–1370 Ma) of Laurentian crust produced 
the extensive Belt-Purcell basin (Fig. 3) of the 
northern Rocky Mountains (Evans et al., 2000; 
Luepke and Lyons, 2001), and undetected coeval 
structures could well be present farther south in 
the subsurface of the Great Basin (Fig. 2). Some-
what younger rift structures, associated with 
deposition of the Unkar Group (1255–1105 Ma) 
in the Grand Canyon south of the Great Basin, 
were coeval with the Grenville assembly of 
Rodinia and may have counterparts that extend 
into the Great Basin (Timmons et al., 2005).

Of special interest is the possibility that the 
Uinta Mountain–Big Cottonwood trough or aula-
cogen projects beneath miogeoclinal cover into 
the northeastern Great Basin along the trend of 

the Archean-Paleoproterozoic suture (Fig. 3), 
which may have controlled the position of a local 
bend in the confi guration of the miogeoclinal 
Paleozoic continental margin (Miller et al., 1991). 
The Uinta Mountain Group and Big Cottonwood 
Formation are poorly dated, but the best available 
geochronology indicates deposition during the 
premiogeoclinal interval of 770–740 Ma (Dehler 
et al., 2005). This time frame is coeval with 
deposition of the premiogeoclinal Chuar Group 
(775–735 Ma) of the Grand Canyon in fault-con-
trolled rift basins (Timmons et al., 2001), which 
may also have counterparts in the subsurface of 
the Great Basin to the northwest.

CORDILLERAN MIOGEOCLINE

Neoproterozoic continental separation by 
rifting delineated the Cordilleran margin not 
long before the onset of Phanerozoic time and 
initiated deposition of a westward-thickening 
prism of miogeoclinal sediment (Fig. 2), includ-
ing both shelfal and off-shelf slope strata of 
Neoproterozoic to Devonian age (Poole et al., 
1993). Few have speculated about the possible 
infl uence of continental rifting on ore genesis 
because all modern examples of passive conti-
nental margins are buried beneath thick sediment 
cover and are unavailable for direct observation, 
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but thermal effects of rifting on continental crust 
may be signifi cant as deeper crustal levels are 
brought toward the surface by tectonic denuda-
tion. Simultaneous injection of mantle melts 
into thinning crust may further introduce metal-
lic elements not previously present in compa-
rable abundance within the crustal profi le. The 
continental basement beneath the miogeoclinal 
sediment prism thins westward across the Great 

Basin from the Wasatch hinge line, fl anking the 
unrifted craton, to a feather edge beyond which 
paleo-Pacifi c oceanic crust once lay west of the 
miogeoclinal belt (Fig. 3).

Continental separation and initiation of mio-
geoclinal sedimentation was apparently dia-
chronous north and south of a paleotransform 
that defi nes a prominent marginal offset in the 
rifted continental margin at the northern limit 

of the Great Basin segment of the Cordilleran 
miogeocline (Fig. 3). In Canada and Washing-
ton farther north, basaltic rocks associated with 
glaciomarine diamictite in basal horizons of 
the miogeoclinal succession (Ross, 1991) have 
been dated isotopically at 770–735 Ma (Devlin 
et al., 1988; Rainbird et al., 1996; Colpron et 
al., 2002). Correlative strata (see previous sec-
tions) exposed marginal to the Great Basin in 
the Uinta Mountains (Uinta Mountain Group) 
and the Grand Canyon (Chuar Group) occupy 
intracontinental rift troughs (Fig. 2) that devel-
oped before continental separation, which was 
delayed in the Death Valley region until after 
600 Ma (Prave, 1999).

The onset of postrift thermotectonic sub-
sidence of the miogeoclinal continental mar-
gin within the Great Basin occurred in Early 
Cambrian time (Armin and Mayer, 1983; Levy 
and Christie-Blick, 1991), at 525–515 Ma as 
adjusted for modern geologic time scales. By 
analogy with the modern Atlantic passive conti-
nental margin of North America, where ~55 m.y. 
elapsed between initial development of Trias-
sic rift basins and the earliest emplacement of 
Jurassic oceanic crust offshore (Manspeizer and 
Cousminer, 1988), continental separation in the 
Great Basin can be inferred at ca. 575 Ma in late 
Neoproterozoic time. Isotopic dating of synrift 
volcanic rocks in southern British Columbia at 
570 ± 5 Ma (Colpron et al., 2002) implies that 
fi nal continental separation in the Great Basin 
was accompanied by rejuvenation of rifting 
along the preexisting passive continental margin 
farther north in Canada. Given multiple rifting 
events along the Cordilleran margin, and the 
long duration (>50 m.y.) of incremental rifting 
required to achieve full continental separation, 
basement rocks at depth below the miogeoclinal 
sediment prism may have experienced a high 
geotherm for a prolonged interval of Neopro-
terozoic time.

ANTLER-SONOMA OBDUCTION

Miogeoclinal sedimentation was terminated 
after mid-Paleozoic time by eastward obduction 
of overthrust subduction complexes forming the 
Roberts Mountains and Golconda allochthons 
(Figs. 4 and 5), which were emplaced during the 
Devonian-Mississippian Antler orogeny and the 
Permian-Triassic Sonoma orogeny, respectively 
(Fig. 2). The two migratory subduction com-
plexes approached the Cordilleran continental 
margin in response to slab rollback beneath 
a system of active and remnant intraoceanic 
island arcs now exposed in the eastern Klamath 
Mountains and northern Sierra Nevada (Dick-
inson, 2000). The offshore island-arc system 
faced southeast toward the continental margin 
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in  central Nevada, subducting the miogeoclinal 
belt downward to the northwest. The miogeocli-
nal sediment prism was drawn down to depths of 
5–15 km beneath the internally deformed over-
thrust assemblages, and burial depth increased 
westward as the subducted miogeocline was 
tilted downward to the west beneath westward-
thickening subduction complexes (Speed and 
Sleep, 1982).

The continuity of the underthrust miogeocli-
nal prism beneath the overthrust oceanic alloch-
thons is confi rmed by exposures in multiple 
tectonic windows (Fig. 3) distributed from the 
Antler-Sonoma foreland westward to central 
Nevada (Stewart and Carlson, 1976; Stewart, 
1980). The superposed Roberts Mountains and 
Golconda allochthons were derived in bulk from 
an oceanic region (Dickinson, 2000) that lay 
beyond the offshore limit of the miogeoclinal 
belt (Rowell et al., 1979). Disparate paleogeo-
graphic origins for the two allochthons are con-
fi rmed by the ages of detrital zircons in deformed 
sedimentary assemblages of both allochthons, 
which generally lack zircons comparable in age 
to those present in sandstones of the underlying 
miogeocline derived from the adjacent craton 
(Gehrels and Dickinson, 1995; Dickinson and 
Gehrels, 2000). Along the eastern fringe of 
the Roberts Mountains allochthon, however, 
selected stratigraphic units contain detrital zir-
cons apparently derived from the adjacent cra-
ton and presumably represent stratal increments 
added from an offshore continental rise to the 
front of a growing subduction complex as the 
latter approached the continental margin.

Antler-Sonoma Events

The Antler orogen, formed in central Nevada 
by thrust emplacement of the Roberts Moun-
tains allochthon in latest Devonian to earliest 
Mississippian time (Fig. 4), was capped discon-
tinuously by nonmarine to shallow-marine strata 
of the Antler overlap sequence (Fig. 2). The oro-
gen-capping succession is broken by multiple 
unconformities, but ranges in age from late Mis-
sissippian through Permian, and shelf deposits 
that form its uppermost horizons locally include 
lowermost Triassic strata. Lateral equivalents of 
the Antler overlap sequence to the east include 
Mississippian clastic strata of the Antler foreland 
basin (Fig. 3), which was downfl exed beyond 
the Roberts Mountains thrust front of the Antler 
orogen along an elongate belt fl anking extensive 
Mississippian carbonate platforms of the conti-
nental interior (Dickinson et al., 1983). The fore-
land succession is underlain by Devonian-Mis-
sissippian shale and limestone of the migratory 
Pilot-Joana backbulge-forebulge system (Goe-
bel, 1991; Giles and Dickinson, 1995; Giles, 

1996), and it is overlain by Pennsylvanian-Per-
mian limestone with intercalated clastic inter-
vals (Fig. 2). To the west, lateral equivalents of 
the Antler overlap sequence form the Havallah 
sequence (Fig. 4), which was deposited within a 
residual oceanic trough lying offshore from the 
continental margin from latest Devonian to lat-
est Permian time (Dickinson, 2000).

Late Paleozoic deformation centered in Penn-
sylvanian time in the Ancestral Rocky Moun-
tains Province of the continental interior (Dick-
inson and Lawton, 2003) extended westward far 
enough to affect the Antler foreland region in 
the interval between Antler and Sonoma events 
(Fig. 2). Local depocenters (Fig. 4), clastic 
wedges, and multiple unconformities of Carbon-
iferous to Permian age have been reported from 
widespread localities lying east of the Antler and 
Sonoma thrust fronts (Trexler et al., 2004).

The deformed Havallah sequence was thrust 
over the Antler overlap sequence in latest Per-
mian to earliest Triassic time (Fig. 2), as the 

Golconda allochthon of the Sonoma orogen 
(Fig. 5). The Golconda allochthon was intruded 
after structural emplacement by an Upper Tri-
assic pluton (219 Ma) of the Mesozoic Sierra 
Nevada arc assemblage near Mono Lake (Sch-
weickert and Lahren, 1987, 1993b), and an 
Upper Triassic (Norian) overlap sequence of 
clastic strata (Auld Lang Syne Group) resting 
on the Golconda allochthon in central Nevada 
is contiguous with facies equivalents on the 
Colorado Plateau to the east (Lupe and Silber-
ling, 1985; Riggs et al., 1996). These intrusive 
and stratigraphic relationships tie the Golconda 
allochthon to the continental block by mid-
Triassic time, even though no well-developed 
foreland basin can be discerned beyond the 
Golconda thrust front (Lawton, 1994). Increas-
ingly marine facies toward the west within the 
Moenkopi Formation (Early to Middle Trias-
sic) of the Colorado Plateau represent a marine 
transgression of the continental interior (Fig. 5) 
and is interpreted here to refl ect seaward tilt 
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from Sonoma foreland downfl exure east of the 
Golconda thrust front.

Extensions of Paleozoic miogeoclinal and 
arc-related tectonic belts to the southwest of 
the Great Basin are largely unknown (Fig. 4) 
because of tectonic truncation (Fig. 2) of Lau-
rentia by Permian-Triassic sinistral strike slip in 
the Sierra Nevada foothills along the Melones 
fault trend, a segment of the California-Coa-
huila transform (Fig. 5). The Antler orogen was 
offset southward from the vicinity of Mono 
Lake in the central Sierra Nevada to the Kern 
Plateau in the southern Sierra Nevada and the 
El Paso Mountains adjacent to the modern Gar-
lock fault, and the miogeocline was offset into 
Sonora as the Caborca block (Fig. 3). Offset of 
Sonoma tectonic trends is less well understood 
but can be inferred as well. Northward from the 
Great Basin, the Antler thrust system is pres-
ent in central Idaho (Wust and Link, 1988a, 
1988b; Link et al., 1996) and follows the arcu-
ate structural trend of the transnational Kootenai 
belt of northeastern Washington into Canada 
(Smith and Gehrels, 1992; Smith et al., 1993). 
The Antler foreland basin (Fig. 4) also extended 
through Idaho-Montana into Canada (Nilsen, 
1977; Dorobek et al., 1991; Savoy and Mount-
joy, 1995).

Metallogenic Implications

Exhalative ore deposits (Papke, 1984) of syn-
genetic character within the Paleozoic alloch-
thons of central Nevada did not form above 
continental basement, but rode over it from the 
oceanic region to the west during partial sub-
duction of the miogeocline beneath oceanic 
subduction complexes. The environment of ore 
genesis for these deposits lay within a remnant 
or marginal ocean basin underlain by oceanic 
lithosphere with a thin crustal profi le.

The potential impact of partially subducting 
the miogeoclinal sediment prism on the devel-
opment of protores in central Nevada has com-
monly been overlooked, but in my view should 
receive close attention. Crustal fl uids typically 
migrate upward and away from thrust systems 
associated with subduction zones (Dickin-
son, 1974; Oliver, 1992). When the previously 
undeformed miogeoclinal sediment prism was 
tilted and drawn beneath the overriding Roberts 
Mountains allochthon during the Antler event, 
fl uids contained within the miogeoclinal strata 
were perforce driven updip to the east away from 
the evolving subduction zone. Metals could then 
have been scavenged by the migratory fl uids 
from large volumes of sediment and transported 
for long distances to the east into cooler crustal 
levels of the miogeocline or into the basal part 
of the structurally overlying allochthon, where 

precipitation of metals might have been favored. 
Migration paths for fl uids would have been 
more disrupted by previous Antler deformation 
during the subsequent Sonoma event, but with 
that caveat, somewhat analogous conditions 
would have prevailed beneath the Golconda 
allochthon.

Fluid migration within the sediment fi ll of 
a compound Antler-Sonoma foreland basin 
may also have transported metals eastward 
far beyond the frontal edges of the Roberts 
Mountains and Golconda allochthons. Multiple 
studies have shown the combined effi cacy of 
regional dip within foreland basins and the topo-
graphic relief of associated thrust highlands for 
driving fl uids toward craton hinge lines from the 
deep keels of foreland basins (Bethke and Mar-
shak, 1990; Garven et al., 1993; Ge and Garven, 
1994). Clastic Paleozoic strata deposited within 
the foreland region grade eastward into, or inter-
tongue laterally with, carbonate assemblages 
(Fig. 4) to set up an attractive regional geometry 
for lateral transport and precipitation of metallic 
elements by migratory fl uids.

CORDILLERAN ARC-BACKARC

Following regional truncation of pre-Meso-
zoic tectonic belts trending northeast-southwest 
across the Great Basin (Figs. 3 and 4) by the 
California-Coahuila transform (Fig. 5), subduc-
tion of seafl oor downward to the east beneath 
the truncated continental margin initiated the 
Cordilleran magmatic arc (Figs. 2 and 6), which 
trends at a high angle to older tectonic trends 
(Dickinson, 2000). Along most of the Cordille-
ran margin, the oldest magmatic components of 
the Cordilleran arc assemblage are Late Trias-
sic in age (Dickinson, 2004), but the age range 
of dated plutons in the Mojave region of south-
ern California spans nearly all of Triassic time, 
with precursors perhaps as old as latest Permian 
(Barth and Wooden, 2006).

Backarc Geodynamics

Mid-Triassic to mid-Jurassic evolution of the 
continental-margin arc to the west was accom-
panied in west-central Nevada by turbidite sedi-
mentation within a deep backarc basin probably 
underlain by a thin crustal substratum inher-
ited from Paleozoic slab rollback. Strata along 
the west fl ank of the basin interfi nger with arc 
volcanics (Stewart, 1997). Subsidence of the 
basin fl oor was enhanced by backarc extension 
(Wyld, 2000) that persisted into mid-Jurassic 
time (Oldow and Bartel, 1987). Mid-Jurassic 
inversion of the backarc basin (Wyld, 2002), 
recorded by eastward thrusting of basin fi ll over 
coeval shelf strata along the Luning-Fencemaker 

thrust system (Fig. 6), coincided closely in time 
with the accretion of an east-facing intraoceanic 
island-arc complex at the subduction zone along 
the continental margin in the Sierra Nevada 
foothills and western Klamath Mountains 
(Dickinson, 2004, 2005). Collisional tectonism 
associated with arc accretion may have been 
linked geodynamically to Luning-Fencemaker 
thrusting, which probably passed southward 
along strike into the East Sierran thrust system 
along the fl ank of the arc in eastern California 
(Dunne and Walker, 2004).

Mid-Jurassic arc accretion resulted from con-
sumption of the oceanic Mezcalera plate that had 
intervened between the west-facing continental-
margin arc, built on the edge of Laurentia, and 
the east-facing offshore intraoceanic arc that was 
accreted (Dickinson and Lawton, 2001a). Accre-
tion of the intraoceanic arc system expanded 
the Pacifi c margin of Laurentia and triggered 
initial subduction of seafl oor on the Farallon 
plate, which lay beyond the accreting arc that 
was built on its eastern edge (Fig. 6). Farallon 
subduction beneath Laurentia was required to 
continue plate convergence between Laurentia 
and the Farallon plate once the intervening Mez-
calera plate had been consumed along the arc-
continent suture in the Sierra Nevada foothills 
and western Klamath Mountains (Fig. 6).

Late Middle to Late Jurassic (165–145 Ma) 
backarc magmatism (Fig. 6), which locally 
overprinted the Luning-Fencemaker thrust sys-
tem (Smith et al., 1993), spread across the Great 
Basin well to the east of the continental-margin 
arc-trench system. The pulse of backarc mag-
matism can be ascribed provisionally to thermal 
effects imposed on the mantle by subterranean 
slab breakoff of the subducted Mezcalera plate 
after closure of the arc-arc suture to the west 
(Cloos et al., 2005). Slab breakoff is inferred 
to have fostered upwelling of asthenosphere to 
trigger inland magmatism not directly linked to 
arc activity. Delayed arrival beneath the Great 
Basin of the leading edge of the Farallon plate 
subsequently subducted at the western fl ank of 
the accreted arc complex (Fig. 6) provided a 
time window for the episode of backarc mag-
matism. Isotopic data indicate a stronger mantle 
infl uence on Jurassic magmatism within the 
Great Basin than on younger Cretaceous mag-
matism (Barton, 1990; Wright and Wooden, 
1991), which was associated in time with the 
foreland Sevier thrust belt farther east (Fig. 7).

West-derived volcaniclastic detritus (Jordan, 
1985) that reached the Middle Jurassic Utah-
Idaho trough (Fig. 6) in the foreland region was 
apparently derived from the backarc Jurassic 
igneous belt of the Great Basin before thrust 
highlands intervened (Lawton, 1994). Structural 
relations permissive of synmagmatic crustal 
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extension across the Great Basin during back-
arc Jurassic magmatism (Lawton, 1994) sug-
gest that backarc rifting may have controlled 
development of the Utah-Idaho trough, which 
accumulated ~1500 m of strata during the inter-
val 170–160 Ma (Bjerrum and Dorsey, 1995). 
The restriction of coeval backarc plutons and 
the Utah-Idaho trough (Fig. 2) to a single broad 
transect of the Cordilleran orogenic system 
(Fig. 6) implies some common geodynamic 

context, and the fl anks of the Utah-Idaho trough 
were at least in part controlled by extensional 
faulting (Moulton, 1976; Picha and Gibson, 
1985). The alternate interpretation (Bjerrum and 
Dorsey, 1995) that the Utah-Idaho trough was 
a fl exural basin infl uenced by retroarc thrusting 
encounters the diffi culty that the coeval Luning-
Fencemaker thrust system lay too far west for 
the Utah-Idaho trough to be a foredeep associ-
ated with the thrust front (Fig. 6).

Retroarc thrusting along the front of the Sevier 
belt (Fig. 7) was initiated late in the Early Cre-
taceous, either during Albian time (Heller et al., 
1986; Yingling and Heller, 1992) or perhaps in 
Aptian time (DeCelles et al., 1995), but in either 
case not long before the mid-Cretaceous (Ceno-
manian) Dakota transgression that marked the 
initial Late Cretaceous fl ooding of the mid-con-
tinent interior seaway. The foredeep depozone 
of a broad foreland basin (Fig. 7) lay parallel to 
the Sevier thrust front near the western edge of 
the Colorado Plateau (DeCelles, 2004). Inter-
pretations that antecedents of the Sevier thrust 
belt were active in earlier Cretaceous or Jurassic 
times require the postulate of a “phantom fore-
deep” (Royse, 1993) that has since been eroded 
from the Sevier hinterland (DeCelles, 2004). 
Across Nevada, however, local preservation of 
volcanic equivalents of Jurassic plutons implies 
only limited net erosion of the Jurassic mag-
matic belt in the Sevier hinterland since erup-
tion of the volcanic rocks and emplacement of 
associated plutons (Miller and Hoisch, 1995).

A divergent branch of the Sevier thrust 
domain, lying well to the west of the thrust 
front, extends along the Eureka thrust belt of 
east-central Nevada (Fig. 7) behind a little-
deformed enclave that was markedly distended 
during Cenozoic time (Bartley and Gleason, 
1990). Lower Cretaceous intramontane strata 
are present along the Eureka thrust belt (Vander-
voort and Schmitt, 1990) and also well within 
the orogen in northwestern Nevada (Quinn et 
al., 1997). The Sevier thrust belt did not extend 
farther south than the fl ank of the pre–mid-Cre-
taceous Bisbee rift basin (Dickinson and Law-
ton, 2001b), which extended into the continental 
block from the opening Gulf of Mexico as far 
as the inland fl ank of the Cordilleran magmatic 
arc (Fig. 7).

Arc Migrations

Late Cretaceous magmatism was intense 
along the western side of the Great Basin where 
the rear fl ank of the Cordilleran magmatic arc 
with its batholith belt and outlying satellite plu-
tons encroached upon the intermountain belt 
(Fig. 7). Post-Jurassic, pre–mid-Cenozoic arc 
magmatism was much less intense farther east 
where Laramide magmatism (Fig. 7) associ-
ated with the shallowing of slab descent beneath 
the continental block swept eastward across 
the Great Basin in latest Cretaceous to earliest 
Paleogene time (Dickinson and Snyder, 1978). 
Later mid-Cenozoic (Late Eocene to Early Mio-
cene) magmatism within the Great Basin was 
associated with a geometrically complex sweep 
of arc magmatism (Fig. 8) back toward the coast 
following an amagmatic interval of shallow slab 
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descent (Fig. 2). Over wide areas, mid-Cenozoic 
plutonism was the most prominent intrusive epi-
sode in the Great Basin since backarc Jurassic 
plutonism (Miller et al., 1987).

In both the Great Basin and the Pacifi c North-
west, migratory Eocene to Oligocene magma-
tism has been viewed as unrelated to subduction 
but instead controlled entirely by intracontinen-
tal extension (Seedorff, 1991; Hooper et al., 
1995). Patterns of seafl oor magnetic anomalies 
offshore indicate, however, that subduction was 
under way along the continental margin through-
out the evolving magmatic episode. Owing to 
shallow plate descent, the thermal state of the 
subducted Paleogene slab beneath the entire 
Great Basin and Pacifi c Northwest was com-
parable to the present thermal state of the more 
steeply dipping Neogene slab directly beneath 
the modern Cascades volcanic arc (Severing-
haus and Atwater, 1990). Extensional intra-arc 
and backarc tectonism were a part of the mid-
Cenozoic geodynamic picture for the Great 
Basin but can be related to slab rollback accom-
panying arc migration. The complex migratory 
pattern of Cenozoic magmatism across the 
Pacifi c Northwest and Great Basin implies slab 
fl exure or rupture during slab rollback, but the 
areal distribution of volcanic centers defi nes a 
coherent array of volcanic fronts embodying 
components of motion parallel as well as nor-
mal to the continental margin (Fig. 8). South-
ward-migrating volcanic fronts crossing the 
Great Basin were linked longitudinally, at each 
successive stage of their progressive evolution, 
with the continental-margin magmatic arc of the 
Pacifi c Northwest and Canada.

Metallogenic Impacts

Signifi cant ore deposition in the Great Basin 
accompanied both Mesozoic (Barton, 1996) and 
mid-Cenozoic (Seedorff, 1991; Henry and Res-
sel, 2000) arc and backarc magmatism, which 
typically involves addition of mantle compo-
nents to various levels in the crust and fosters 
extensive thermochemical reworking of crustal 
materials. Advective heat fl ux is commonly suf-
fi cient to generate crustal melts and to stimulate 
varied hydrothermal and other metasomatic 
processes. Consequently, Mesozoic-Cenozoic 
magmatism subjected the Great Basin to super-
posed episodes of potential metal mobilization 
and precipitation.

Fluid migration in response to Mesozoic 
thrusting may also have been complex in both 
space and time. Jurassic Luning-Fencemaker 
(Fig. 6) and Cretaceous Eureka (Fig. 7) thrust 
belts may both have induced fl uid migration on 
a subregional scale. The regional Sevier fore-
land basin lay largely east of the Great Basin, 

but its deformed western fringe and the associ-
ated retroarc thrust belt was mostly within the 
Great Basin, and little is yet known about the 
migration of fl uids within basement and cover 
that were underthrust to deep crustal levels 
beneath the Sevier hinterland in the eastern 
Great Basin (Miller and Gans, 1989; Hudec, 
1992; McGrew et al., 2000). By the end of 
Sevier thrusting, much of the present Great 
Basin was a broad, highstanding plateau (Dilek 
and Moores, 1999), similar topographically to 
the Altiplano of the modern Andes and termed 
by analogy the “Nevadaplano” (DeCelles, 
2004). Inferences about the evolving confi gu-
ration of the retroarc Sevier foreland system 
through time are complicated by the need to 
take into account not only the structural assem-
bly and isostatic effect of telescoped thrust 
loads in the upper crust, but also the geody-
namic effect of an underthrust slab moving at 
depth into the mantle below (Mitrovica et al., 
1989). Surface elevations of both the thrust 
belt and the foreland basin, with implications 
for hydrologic conditions in the crust, resulted 
from these twin crust-mantle infl uences on 
isostasy (DeCelles and Giles, 1996).

COMPOSITE CENOZOIC EXTENSION

The very existence of the Great Basin as an 
internally drained tract of mountainous topogra-
phy broken by sedimented valleys stems from a 
Cenozoic regime of extensional tectonism. The 
terms Great Basin and Basin and Range Prov-
ince denote virtually co-extensive domains in 
Nevada and adjoining Utah, but the Basin and 
Range taphrogen (Dickinson, 2002) is much 
larger, embracing an elongate region that extends 
from the Pacifi c Northwest to central Mexico 
(Fig. 1). The composite extensional domain was 
subject during Cenozoic time to different geo-
dynamic controls that varied in both space and 
time. In the Great Basin itself, two successive 
phases of extensional deformation related to dif-
ferent geodynamic settings can be distinguished 
(Dickinson, 1991, p. 24–25, 33–36).

Basin-Range Tectonism

The more recent of the two extensional 
regimes (Fig. 9) controlled development of the 
modern basins and ranges beginning in Early 
Miocene time (ca. 17.5 Ma), after the San 
Andreas transform system was established along 
the southern California coast as the boundary 
between the Pacifi c and North American plates 
of lithosphere (Dickinson, 1997). Before then, 
the two regional plates were largely separated 
by oceanic microplates that shielded them from 
direct interaction. Although various geodynamic 

scenarios have been proposed to explain classic 
basin-range deformation typifi ed by block fault-
ing, transtensional torsion of the continental 
block under the infl uence of shear interaction 
along the San Andreas transform remains the 
most attractive (Atwater, 1970). Penetration of 
the Eastern California shear zone strand of the 
San Andreas system as far east as the Walker 
Lane belt (Stewart, 1988) near the California-
Nevada border demonstrates the distributive 
style of transform deformation by strike slip in 
continental crust.

Basaltic magmatism in the backarc of the 
Pacifi c Northwest began in mid-Miocene time 
(17–14 Ma) with voluminous eruptions of 
Columbia River Basalt (Fig. 9), which may 
have been triggered by initial deformation of the 
continental plate under transform shear (Dick-
inson, 1997). The trend of feeder dike swarms 
for the Columbia River Basalt is parallel to the 
coeval Northern Nevada Rift (Zoback et al., 
1994) of the Great Basin to the south (Fig. 9), 
a coincidence that argues for similar mid-Mio-
cene stress orientations throughout the backarc 
region from the Pacifi c Northwest down into the 
Great Basin. An elongate chain of silicic calde-
ras, nestled within or fl ooded by basalt lavas of 
the Snake River Plain, was initiated during the 
same time frame (16–14 Ma) just north of the 
Northern Nevada Rift but to the south of pre-
served remnants of the Steens Basalt append-
age of the Columbia River Basalt fi eld (Fig. 9). 
The Snake River Plain, taken here to delimit the 
Great Basin segment of the Basin and Range 
taphrogen on the north (Fig. 1), was superim-
posed across the Basin and Range Province, 
which continued to evolve both north and south 
of the Snake River Plain as volcanism proceeded 
(Dickinson, 2002). Widespread basaltic volca-
nism along the Snake River Plain succeeded 
migratory silicic volcanism that was associ-
ated with hotspot caldera complexes that young 
progressively along the plain from the Miocene 
McDermitt caldera (16 Ma) on the southwest to 
the modern Yellowstone caldera (younger than 
1 Ma) on the northeast (Fig. 9).

Core Complex Relations

Pre–mid-Miocene episodes of Cenozoic 
extension within the Great Basin, including 
tectonic denudation of core complexes (Fig. 8), 
cannot be related to evolution of the San Andreas 
transform system because subduction of the 
Farallon and derivative oceanic plates was still 
under way along the continental margin to the 
west. The timing of pre–basin-range extensional 
tectonism in relation to migratory intermedi-
ate to silicic arc magmatism suggests instead 
that it can be viewed as intra-arc or backarc 
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 deformation induced by slab rollback rather 
than transform shear (Dickinson, 2002).

Local synvolcanic extensional basins of 
Eocene age are known (Potter et al., 1995), but 
there is no regional association between initial 
extension and the onset of migratory Great Basin 
magmatism. The onset of volcanism generally 
preceded major extensional deformation (Gans 
et al., 1989; Seedorff, 1991; Spencer et al., 1995; 

Henry and Ressel, 2000), and tilt and offset of 
the volcanic rocks form a prime geometric con-
trol for analysis of mid-Cenozoic extensional 
features. Detachment faulting and tectonic 
denudation of core complexes took place for the 
most part in the wake of the migratory volcanic 
fronts that swept southward through the Great 
Basin (Fig. 8) from Eocene time in Idaho to Oli-
gocene time in Nevada, with fi nal exhumation of 

core complexes in northeastern Nevada (Fig. 8) 
delayed until Early Miocene time (Dickinson, 
2002). Small Late Miocene core complexes 
near the California border in southwesternmost 
Nevada were probably related to superextension 
linked to strike slip along en echelon subparallel 
strands of the Walker Lane fault system (Dick-
inson, 2002).

Multiple reinforcing mechanisms can be 
invoked for pre–basin-range extensional defor-
mation (Dickinson, 1991, p. 34), including: 
(1) release of intraplate compressive stress 
as post-Laramide steepening of slab descent 
reduced interplate shear at depth, (2) retreat of the 
offshore trench hinge by slab rollback to allow 
lateral expansion of the intermountain region, 
(3) gravitational collapse of an overthickened 
crustal welt produced by earlier orogenic con-
traction, and (4) advective heating of the crustal 
profi le by mantle melts to promote intracrustal 
failure under extensional stresses. The arc-rear 
or backarc setting of mid-Cenozoic extension 
contrasted with the “back-transform” setting of 
currently active basin-range deformation.

Early stages of Neogene basin-range tec-
tonism also developed, however, in a backarc 
setting. Northward migration of the Mendocino 
triple junction, which marks the northern end of 
the San Andreas transform, gradually switched 
off the magmatic arc west of the Great Basin 
(Fig. 9), but only after classic basin-range 
tectonism had begun to the east. Southward 
migration of the arc trend had largely ceased, 
however, before the onset of the modern basin-
range regime (Figs. 8 and 9); this implies that 
a geodynamic infl uence from slab rollback 
was characteristic of only the pre–basin-range 
mid-Cenozoic extension. As the development 
of mid-Cenozoic core complexes involved duc-
tile fl ow of lower crust (Gans, 1987; Wernicke, 
1992; MacCready et al., 1997), the change in 
structural style from detachment faulting to 
block faulting may have stemmed in part from 
a thermomechanical transition in the rheologi-
cal behavior of crust undergoing extension as 
cumulative crustal thinning reduced the thick-
ness of ductile lower crust (Harry et al., 1993; 
Spencer et al., 2001). A rheological stiffening 
of the crustal profi le may also have facilitated 
transfer of transform shear inland from the San 
Andreas plate boundary during Neogene basin-
range deformation. The scale of Figure 9 pre-
cludes illustration of transform strands of the 
Walker Lane fault system and associated postarc 
igneous centers that supplanted arc magmatism 
near the California-Nevada border as progres-
sive arc switchoff swept the southern end of 
the magmatic arc northward toward its pres-
ent locus, limited to the Cascades chain of the 
Pacifi c Northwest.
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Metallogenic Infl uences

The metallogenic imprint of Cenozoic exten-
sional deformation on Great Basin ore deposits 
(Dreier, 1984; John, 2001) may have had two 
parallel and partly interacting aspects. On the 
one hand, mantle-derived magmas may have 
altered the crustal profi le over wide areas, both 
directly by injection of contributions from the 
mantle and indirectly by stimulating generation 
of crustal magmas with advective heat fl ux that 
accompanied the rise of mantle melts. On the 
other hand, crustal extension may have generated 
extensive metal-transporting hydrothermal sys-
tems, associated both with igneous centers and 
with the tectonic exhumation of hot rock masses 
from the midcrust within core complexes. Either 
detachment faulting or steep normal faulting, 
without actually playing any signifi cant role in 
metallogenesis, might also have brought buried 
ore bodies closer to the surface where they could 
be more readily exposed by erosion.

SUMMARY PERSPECTIVES

The spectrum of Great Basin ore deposits is 
too broad to permit effective summary in this 
tectonic overview, but the following recapitula-
tion of metallogenic infl uences through Great 
Basin geologic history provides a basis for more 
detailed discussion:

(1) If any metals were derived from mantle 
sources at times postdating the crustal genesis 
that formed Precambrian basement, they could 
have entered the crust during rift events (Meso-
proterozoic locally, Neoproterozoic along the 
length of the miogeocline, Neogene over much 
of the Great Basin) or within arc and backarc 
igneous systems (Late Triassic to Late Cre-
taceous along the western fringe of the Great 
Basin, Jurassic and latest Cretaceous through 
mid-Cenozoic farther east).

(2) If any metals were derived from crustal 
basement rocks, they could have been scavenged 
during any of the same rift-related or arc-related 
igneous episodes, as well as during generation 
of dominantly crustal Late Cretaceous melts in 
the eastern Great Basin.

(3) If any metals were derived from strata of 
sedimentary successions, they could have been 
set in motion by hydrothermal activity associ-
ated with any of the same igneous episodes, or 
by intracrustal fl uid fl ow triggered by thrusting 
(Paleozoic and Jurassic in the western Great 
Basin, Cretaceous in the eastern Great Basin), 
which tilted basinal strata to form migration 
pathways and created concomitant topographic 
relief to provide a hydrologic drive.

(4) Metalliferous fl uids set in motion by any 
of these diverse mechanisms may have followed 

either local or subregional migration paths, con-
trolled by bedding or fractures, into a variety of 
shallower and cooler source rocks.
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