Guidebook

Society of Economic Geologists Foundation, Inc.
Student-Dedicated Field Course –
IOCG and Cu-Ag Andesite-hosted Deposits, Chile

March 6 - 12, 2008

Erich U. Petersen¹

William X. Chávez, Jr.²

¹College of Mines & Earth Sciences, University of Utah, Salt Lake City, UT, 84112
²New Mexico School of Mines, Socorro, NM, 87801
This is the fourth in the series of SEG Foundation-sponsored student field courses. The course will emphasize the geology and geochemistry of Cu-Fe-Au systems, considered to be related to "IOCG-type" ore deposits, and of volcanic-hosted Cu-Ag systems comprising "Chilean-type" manto ore deposits. Visits to Mina Carola and Las Pintadas in the Copiapó region will allow participants to observe district-scale and mine-scale exposures of ore deposits variably described as skarns, breccia bodies, veins, replacement bodies, and "other". Additional information can be found on the website: www.mines.utah.edu/pyrite/chile2008/index.html.

In the Chilean coastal cordillera, the Cu-Ag systems hosted by intermediate to felsic volcanic rocks, including the Mantos Blancos District, will be visited. The geochemistry of these systems and the exploration and genetic characteristics of this important class of ore deposits will be emphasized.

The course will begin in Copiapó on the evening of March 6th, and end in Antofagasta on the evening of March 12th. Participants should plan to depart Antofagasta on March 13th or later.
<table>
<thead>
<tr>
<th></th>
<th>Participants</th>
</tr>
</thead>
</table>
| 1. | Acosta, Pedro
Univ Costa Rica (NMT)
pacosta@nmt.edu |
| 2. | Bernabe Evans, Pablo
Universite de Concepcion
pbernabe@udec.cl |
| 3. | Freemantle, Guy
University of the Witwatersrand
redbaron84@gmail.com |
| 4. | Goldner, Brian D.
University of Minnesota-Duluth
gold0334@d.umn.edu |
| 5. | La Rochelle, Francois
University Quebec a Montreal
laro80@hotmail.com |
| 6. | Lambiv Dzemua, Gideon
University of Alberta
lambiv@ualberta.ca |
| 7. | Luengas Burgos, Camia S.
Univ Nacional de Colombia
csluengasb@unal.edu.com |
| 8. | McClenaghan, Lindsay
University of Western Ontario
lmcclena@uwo.ca |
| 9. | Perez, Jose A.
University of Geneva
perezja6@etu.unige.ch |
| 10. | Rheubottom, Amber
University of Utah
a.rheubottom@utah.edu |
| 11. | Shank, Joel
University of Western Ontario
jshank2@uwo.ca |
| 12. | Shaw, Eleanor
University of Leicester
ems21@le.ac.uk |
| 13. | Terracciano, Rosario
University of Napoli
peppe.terracciano@tin.it |
| 14. | Wallis, Alex
University of Victoria, Canada
wallisa@uvic.ca |
| 15. | Hedderly-Smith, David A.
D.A. Hedderly-Smith & Assoc.
hedderly@msn.com |
| 16. | Hoyos J., Donato
Cia Minera Milpo, S.A.A.
dhoyos@milpo.com |
| 17. | Salas C., Arturo
Cia Minera Milpo, S.A.A.
asalas@milpo.com |
| 18. | Juan Medina
Cia Minera Milpo, S.A.A.
jmedina@milpo.com |
| 19. | Seavoy, Ronald
Bowling Green State University
rseavoy@bgnet.bgsu.edu |
| 20. | Toygar Tanyildiz
Rio Tinto Zinc
Toygar.Tanyildiz@riotinto.com |
| 21. | Waggoner, Thomas D.
Cleveland Cliffs Iron Co.
thomaswaggonergeo@hotmail.com |
| 22. | Chávez Jr., William X.
New Mexico Inst. Tech.
wxchavez@nmt.edu |
| 23. | Petersen, Erich U.
University of Utah
erich.petersen@utah.edu |
FINAL

Society of Economic Geologists Foundation, Inc.

“IOCG” and Copper – Silver Districts of Northern Chile

6 – 12 March, 2008

Leaders:
- Dr. William X. Chávez, Jr.
 New México School of Mines
 Socorro, New México, U.S.A. 87801
 wxchavez@nmt.edu
 Office: 505-835-5317
- Dr. Erich U. Petersen
 University of Utah
 erich.petersen@utah.edu
 Office: 801-585-7162

<table>
<thead>
<tr>
<th>Date</th>
<th>Itinerary</th>
<th>Overnight</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 March</td>
<td>Students: 10:00 AM assemble at Antofagasta airport for bus ride to Copiapó. (if starting in Antofagasta); arrive Copiapó late afternoon. All: 7:00PM meeting at Hotel Duna lobby for logistics, safety, and itinerary discussion.</td>
<td>Hotel Duna</td>
</tr>
<tr>
<td>Thursday</td>
<td>Students: Residencial Plaza: 56-52-212671 Calle O’Higgins No. 670 Contact: María Cortés Rojas</td>
<td>Residencial Plaza Copiapó</td>
</tr>
<tr>
<td>7 March</td>
<td>7:30AM – Visit Mina Carola structurally-controlled Cu-Fe-Au deposit Hotel Duna</td>
<td>Residencial Plaza Copiapó</td>
</tr>
<tr>
<td>Friday</td>
<td>Contact: Ing. Nicolae Pop, Gerente de Geología nicupop1947@yahoo.ca Soc. Contractual Minera Carola Teléfono: 56-52-320-001 Secretaria: Orieta Gálvez orieta.galvez@scmcarola.cl Contacto: Ing. Constantin Isache (56-52-320-001) Contacto: Stefan Gonzci, geólogo (56-52-320-025)</td>
<td></td>
</tr>
<tr>
<td>8 March</td>
<td>9:00AM- Field Visit: Dr. Mark Barton and graduate student Doug Kreiner Hotel Duna</td>
<td>Residencial Plaza Copiapó</td>
</tr>
<tr>
<td>Saturday</td>
<td>Review of IOCG systems, field characteristics, alteration-mineralization Doug’s house is (52)-221-910 Barton in Copiapó: 56-52-224-007</td>
<td></td>
</tr>
<tr>
<td>9 March</td>
<td>6:00AM – Visit Altamira District with andesite-hosted Cu-Ag mantos Hostería Taltal</td>
<td></td>
</tr>
<tr>
<td>Sunday</td>
<td>Contact: Román Flores (cell: 56-9-2270-243) rfv@centenariocopper.cl</td>
<td>Taltal</td>
</tr>
<tr>
<td></td>
<td>Contact: Richard Colterjohn (Toronto): (416) 360-0059 rcolterjohn@glencoban.com Mine Contact: Lincoyán Hernández: 56-2-207-5086 (Santiago) lhr@centenariocopper.cl</td>
<td></td>
</tr>
</tbody>
</table>
10 March
Monday
7:00AM – Visit Las Luces District with andesite-hosted Cu-Ag mantos
Hotel El Tatio
Contact: Julio Kemm V. Gerente Operaciones 56-2-462-3602 (mina)
Hotel Costa Marfil
Contact: Juan Carlos Reyes, Geólogo Jefe 56-55-612-558 (mina) Antofagasta

Lodging: *Professionals at Hotel El Tatio (confirmed 22 January (Alejandro))
**students at Costa Márfil

Contact: hotelcostamarfil@yahoo.es (Sra. Erika Corrales Poblete) – or Danitza
Teléfono: 56-55-225569 (oficina) ó -283590 (oficina) ó 269-361 (público)

Hotel El Tatio: 56-55-419-111 <consultastatio@123.cl>
Contact: Luis Castillo or Alejandro

11 March
Tuesday
7:00AM – Depart for Mina Iván Cu-(Ag) breccia systems
Hotel El Tatio*
Contact: Jorge Vargas, Gerente General <jvargas@milpo.com> 56-55-415-742
Hotel Costa Marfil**
Contact: Carlos Zumarán, Supte. Servicios Técnicos czumaran@milpo.com 56-55-415-717
Contact: Tamara Palma, Geóloga tpalma@milpo.com 56-55-415-714
Milpo in Lima: Lucy Chu Lao: <lchulao@milpo.com>

12 March
Wednesday
7:00AM – Visit Mantos Blancos volcanic-hosted Cu-Ag system
Hotel El Tatio
Contact: Diego Sanhueza <dsanhueza@angelochile.cl> 56-55-693-078 (mina)
Hotel Costa Marfil Antofagasta
Contact: César Ulloa (mina)
Teléfono: AngloChile office in Santiago: 56-2-230-6000

7:00 PM Wally’s Pub Farewell Dinner

13 March
Thursday
End of Course – Participants Return on his/her own schedule

Logistics: Safety

1. All participants must have steel toe boots, REFLECTIVE red or orange vests or jackets, sun and clear safety glasses (for underground) and hardhats. Please bring a flashlight for underground mine visits to the smaller mines on our itinerary.

2. Appropriate clothing for mine visits are long-sleeve shirts and long pants.

3. The weather in Copiapó and Antofagasta this time of year is generally warm, with substantial insolation. As such, please drink plenty of water during the field course, and plan for sun protection: sunscreen, lip balm, sunglasses, and perhaps a bandana.

4. The SEGF provides ground transportation during the course, in the form of a full-size bus; please obey all rules as put forth by the bus driver and trip leaders, such as wearing seat belts and placing personal baggage items securely in the overhead racks or under your seats.

5. Participants are responsible for meals; however, some breakfasts are included. At hotels, participants are responsible for all expenses other than lodging – all telephone calls, meals other than included breakfasts, laundry, and the like.
6. Participants are expected to follow ALL safety regulations and rules required at mine sites. As a general rule, mine staff want us to stay together AT ALL TIMES during mine visits, and to be aware of safety issues associated with mines and the mining environment. The field trip leaders will ask about handouts, PowerPoint presentations, etc. Please do not ask our hosts for copies of materials presented before consulting with a field trip leader, as this can be a sensitive issue for the mines. Please note that we carry a first-aid kit with us at all times; please report ANY injury or incident to field course leaders immediately. Please be very careful with rock hammers and be aware of people around you.

Miscellaneous

- **Money Exchange**: Banks and money-changers will exchange currency; some hotels will do so also, although for poorer exchange rates and for limited amounts of money. ATM’s are ubiquitous.

- **Food**: Remember to wash all fruits and vegetables prior to consumption. Water should be bottled or served by the hotel or restaurant, and is generally safe for brushing teeth, washing, showers. It is recommended that you NOT consume mayonnaise, and do not even think of eating a Completo, unless you wish to test the efficacy of your hepatitis vaccine.

- **Cameras and computers**: Please fill in the requested information for your cameras and computers – this is requested by the mines and their security teams in order to account for materials brought into the mine area.
Minerals Commonly Found in the Oxide Zone of Copper Deposits

Alunite ... KAl$_3$(SO$_4$)$_2$(OH)$_6$
Antlerite ... Cu$_3$SO$_4$(OH)$_4$
Atacamite (paraatacamite, botallackite) Cu$_2$Cl(OH)$_3$
Bonattite .. CuSO$_4$.3H$_2$O
Brochanite .. Cu$_4$SO$_4$(OH)$_6$
Ceruleite .. Cu$_2$Al$_7$(AsO$_4$)$_4$(OH)$_{13}$.12H$_2$O
Chalcanthite .. Cu$_3$SO$_4$.5H$_2$O
Chalcosiderite (compare to tourquoise) CuFe$_6$(PO$_4$)$_4$(OH)$_8$.4H$_2$O
Chenevixite ... Cu$_2$Fe$_2$(AsO$_4$)$_2$(OH4.H$_2$O
Chrysocolla (mineraloid) Cu(Fe,Mn)O$_x$-SiO$_2$-H$_2$O, with copper content varying from ~20-40 wt % Cu
Copiapite ... Fe$_5$(SO$_4$)$_6$(OH)$_2$.20H$_2$O
Coquimbite .. Fe$_3$(SO$_4$)$_3$.9H$_2$O
Goethite .. a-FeOOH
Jarosite .. (K,Na)Al$_3$(SO$_4$)$_2$(OH)$_6$
Kröhnkite ... Na$_2$Cu(SO$_4$)$_2$.2H$_2$O
Levandulite .. NaCaCu$_5$(AsO$_4$)$_4$Cl.5H$_2$O
Libethinite .. Cu$_2$PO$_4$(OH)
Paramelanconite Cu$_4$O$_3$ (see tenorite (CuO) and cuprite (Cu$_2$O)
Poitevinite ... (Cu,Fe,Zn)SO$_4$.H$_2$O
Posnjakite ... Cu$_4$SO$_4$(OH)$_6$.H$_2$O
Pseudomalachite Cu$_5$(PO$_4$)$_2$(OH)$_4$
Scorodite ... FeASO$_4$.2H$_2$O
Turquoise ... CuAl$_6$(PO$_4$)$_4$(OH)$_8$.4H$_2$O
Voltaite .. K$_2$Fe$_8$Al(SO$_4$)$_{12}$.18H$_2$O
Wroewolfeite (Langite) Cu$_4$SO$_4$(OH)$_6$.2H$_2$O
Some Common Mineral Formulas

Chlorite ... \((\text{Mg,Fe})_3(\text{Al,Si})_4\text{O}_{10}(\text{OH})_2.\text{(Mg,Fe)}_3(\text{OH})_6\)
Biotite ... KFe_3AlSi_3O_{10}(OH)_2
Muscovite KAl_3Si_3O_{10}(OH)_2
Kaolinite \text{Al}_2\text{Si}_2\text{O}_5(OH)_4
Alkali feldspar \((\text{K,Na})\text{AlSi}_3\text{O}_8\)
Plagioclase Ca\text{Al}_2\text{Si}_2\text{O}_8
Dumortierite \text{Al}_7\text{O}_3(\text{BO}_3)(\text{SiO}_4)_3
Tourmaline \((\text{Na,Ca})(\text{Li,Mg,Al})(\text{Al,Fe,Mn})_6(\text{BO}_3)_3(\text{Si}_6\text{O}_{18})(\text{OH})_4\)

Bornite \text{Cu}_5\text{FeS}_4
Chalcopyrite \text{CuFeS}_2
Chalcocite \text{Cu}_2\text{S}
Covellite \text{CuS}
Cuprite \text{Cu}_2\text{O}
Tenorite \text{CuO}
Typically *trondhjemite* if biotite is only mafic mineral and makes up less than 10% of rock.

- With less than 5% mafic minerals, the rock is *anorthosite*. With more than 40% mafic minerals, it is typically *gabbro*. Rocks with 5-40% mafic minerals are either *diorite* or *leuco-gabbro*, and require determination of the plagioclase, the limiting composition being *An₅₀*.

- The feldspathoid should be specified in each rock name; e.g., *nepheline syenite*.

- The kind of alkali feldspar should be specified if possible; e.g., *microcline granite*.
Figure 34. Isothermal isobaric fugacity diagram showing the stability fields of covellite (CV), chalcocite (CC), pyrite (PY), pyrrhotite (PO), magnetite (MT), and hematite (HM). Chalcopyrite field is surrounded by bornite plus an additional sulfide. Annite stability field is surrounded by orthocata plus sulfides and oxides. Position of potassium-silicate protore at Butte, Montana is given at I. Position of advanced argillic alteration assemblage and Main Stage oxidizing fluid is at the intersection of CV-CC phase boundary and that of alunite-muscovite. From Brimhall (1980) and Brimhall and Ghiors (1983).
Acknowledgements

We wish to acknowledge the many individuals and organizations that made this field trip course possible. Major funding was provided by The Society of Economic Geologists Foundation, Inc. John Thoms and the organizing committee processed all the registration applications. Sue Courtney was coordinator of communications. We wish to thank the professional participants for their generosity and willingness to freely share their knowledge and experience. To our hosts, the mining companies, we also extend our appreciation for their time and effort in welcoming our visit. A full list of sponsors are acknowledged on the trip web page: www.mines.utah.edu/pyrite/chile2008/Sponsors.html.

Erich U. Petersen
Department of Geology and Geophysics
The University of Utah
135 S. 1460 E., Room 719
Salt Lake City, UT 84105
801-581-7238
erich.petersen@utah.edu

William X. Chávez, Jr.
Minerals & Environmental Engineering Department
New Mexico School of Mines
Socorro, NM 87801
505-835-5252
wxchavez@nmt.edu

John Thoms
Society of Economic Geologists Foundation
7811 Shaffer Parkweay
Littleton, CO 80127-3732
johnthoms@segweb.org
Useful References